Identification of a dominant negative homeodomain mutation in Rieger syndrome.
نویسندگان
چکیده
Mutations in the PITX2 bicoid-like homeobox gene cause Rieger syndrome. Rieger syndrome is an autosomal-dominant human disorder characterized by glaucoma as well as dental hypoplasia, mild craniofacial dysmorphism, and umbilical stump abnormalities. PITX2 has also been implicated in the development of multiple organs and left-right asymmetry in the body plan. The PITX2 homeodomain has a lysine at position 50, which has been shown to impart the bicoid-type (TAATCC) DNA binding specificity to other homeodomain proteins. A mutation (K88E), found in a Rieger syndrome patient, changes this lysine to glutamic acid. We were intrigued by the relatively pronounced phenotypic consequences of this K88E mutation. In the initial analyses, the mutant protein appeared to simply be inactive, with essentially no DNA binding and transactivation activities and, unlike the wild type protein, with an inability to synergize with another transcription factor, Pit-1. However, when the K88E DNA was cotransfected with wild type PITX2, analogous to the patient genotype, the K88E mutant suppressed the synergism of wild type PITX2 with Pit-1. In contrast, a different PITX2 homeodomain mutant, T68P, which is also defective in DNA binding, transactivation, and Pit-1 synergism activities, did not suppress the wild type synergism with Pit-1. These results describe the first dominant negative missense mutation in a homeodomain and support a model that may partially explain the phenotypic variation within Rieger syndrome.
منابع مشابه
A novel PITX2 mutation in a Chinese family with Axenfeld-Rieger syndrome
PURPOSE Axenfeld-Rieger syndrome (ARS) is an autosomal dominant disorder characterized by extraocular anomalies and developmental defects of the anterior segment. PITX2 (paired-like homeodomain transcription factor 2) is considered the major causative gene. In this study, we characterized the molecular defect in PITX2 in a Chinese family with ARS. METHODS Two generations of the family with AR...
متن کاملMutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome.
Axenfeld-Rieger syndrome (ARS) and iridogoniodysgenesis syndrome (IGDS) are clinically related autosomal dominant disorders which affect the anterior segment of the eye as well as non-ocular structures. ARS patients present with iris hypoplasia, a prominent Schwalbe line, adhesions between the iris stroma and the iridocorneal angle and increased intraocular pressure. IGDS is characterized by ir...
متن کاملVariation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders.
The autosomal dominant disorders iris hypolasia (IH), iridogoniodysgenesis syndrome (IGDS) and Axenfeld-Rieger syndrome (ARS) are characterized by maldevelopment of the anterior segment of the eye associated with an increased risk of early-onset glaucoma. IH, IGDS and ARS are allelic disorders, as all three can result from mutations of the transcription factor PITX2. IH is the mildest of the th...
متن کاملPITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome
Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In...
متن کاملpitx2 Deficiency Results in Abnormal Ocular and Craniofacial Development in Zebrafish
Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better underst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 25 شماره
صفحات -
تاریخ انتشار 2001